# NOT RUN {
library(compare)
library(orthopolynom)
## raw data (PURELY ARTIFICIAL, for demo purposes only)
# N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
obs122<-c(rep(1,40),rep(2.5,20),rep(5,20),rep(7.5,10),rep(9,10));
obs211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
obs212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
obs221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
obs222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
obs311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
obs312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
obs321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
obs322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));
## compute payoff densities
f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)
payoffs<-list(f111,f112,f121, f122,f211,f212,f221,f222, f311,f312,f321,f322)
G <- mosg( n=2,
m=2,
payoffs,
goals=3,
goalDescriptions=c("g1", "g2", "g3"),
defensesDescr = c("d1", "d2"),
attacksDescr = c("a1", "a2"))
eq <- mgss(G,T=1000,weights=c(0.25,0.5,0.25))
print(eq)
summary(eq)
# construct another loss distribution from a given behavior in the game G
suboptimal <- lossDistribution.mosg(G, c(0.1,0.1,0.8), c(0.2,0.3,0.5))
plot(suboptimal)
# }
Run the code above in your browser using DataLab