Learn R Programming

IRon (version 0.1.4)

ser: Non-Standard Evaluation Metrics

Description

Obtains the squared error of predictions for a given subset of relevance

Usage

ser(trues, preds, phi.trues = NULL, ph = NULL, t = 0)

Value

Squared error for for cases where the relevance of the true value is greater than t (SERA)

Arguments

trues

Target values from a test set of a given data set. Should be a vector and have the same size as the variable preds

preds

Predicted values given a certain test set of a given data set. Should be a vector and have the same size as the variable preds

phi.trues

Relevance of the values in the parameter trues. Use ??phi() for more information. Defaults to NULL

ph

The relevance function providing the data points where the pairs of values-relevance are known. Default is NULL

t

Relevance cut-off. Default is 0.

Details

Squared Error-Relevance Metric (SER)

Examples

Run this code
library(IRon)
library(rpart)

if(requireNamespace("rpart")) {

   data(accel)

   form <- acceleration ~ .

   ind <- sample(1:nrow(accel),0.75*nrow(accel))

   train <- accel[ind,]
   test <- accel[-ind,]

   ph <- phi.control(accel$acceleration)

   m <- rpart::rpart(form, train)
   preds <- as.vector(predict(m,test))

   trues <- test$acceleration
   phi.trues <- phi(test$acceleration,ph)

   ser(trues,preds,phi.trues)

}

Run the code above in your browser using DataLab