Noise structure of the multivarite time series. For noise = 0, 0.5, 1, columns of W have independent multivariate normal distribution with covariance matrix Sigma. When noise = 0, Sigma = sigma^2 * I_p; when noise = 0.5, noise has local dependence structure given by Sigma_i,j = sigma*corr^|i-j|; when noise = 1, noise has global dependence structure given by matrix(corr,p,p)+diag(p)*(1-corr))) * sigma. When noise = 2, rows of the W are independent and each having an AR(1) structure given by W_j,t = W_j,t-1 * sqrt(corr) + rnorm(sd = sigma) * sqrt(1-corr). For noise = 3, 4, entries of W have i.i.d. uniform distribution and exponential distribution respectively, each centred and rescaled to have zero mean and variance sigma^2.