Learn R Programming

IsoGene (version 1.0-24)

IsoRawp: IsoRawp

Description

The function calculates the raw one-sided and two-sided p-values for each test statistic using permutations.

Usage

IsoRawp(x, y, niter, progressBar=TRUE)

Arguments

x
numeric vector containing the dose levels
y
a data frame of the gene expression with Probe IDs as row names
niter
number of permutations to use
progressBar
to enable or disable progress bar; default is TRUE and setting it as FALSE, when problems with tcltk package dependecy occurs, solves the problem

Value

A list of components
raw.p.one
returns the one-sided p-value matrix for the five test statisticsin in 6 columns: the first column is the probe ID, the second to the last columns contain the raw p-values for each test statistic
raw.p.two
returns the two-sided p-value matrix for the five test statistics in 6 columns: the first column is the probe ID, the second to the last columns contain the raw p-values for each test statistic
rawp.up
returns the one-sided p-value matrix testing increasing alternative for the five test statistics in 6 columns: the first column is the probe ID, the second to the last columns contain the raw p-values for each test statistic
rawp.dn
returns the one-sided p-value matrix testing decreasing alternative for the five test statistics in 6 columns: the first column is the probe ID, the second to the last columns contain the raw p-values for each test statistic

Details

The number of permutations to use can be chosen based on the number of possible permutations of samples. If the possible number is too big, usually >5000 permutations can be sufficient.

References

Modeling Dose-response Microarray Data in Early Drug Development Experiments Using R, Lin D., Shkedy Z., Yekutieli D., Amaratunga D., and Bijnens, L. (editors), (2012), Springer.

Testing for Trend in Dose-Response Microarray Experiments: a Comparison of Testing Procedures, Multiplicity, and Resampling-Based Inference, Lin et al. 2007, Stat. App. in Gen. & Mol. Bio., 6(1), article 26.

IsoGene: An R Package for Analyzing Dose-response Studies in Microarray Experiments, Pramana S., Lin D., Haldermans P., Shkedy Z., Verbeke T., De Bondt A., Talloen W., Goehlmann H., Bijnens L. 2010, R Journal 2/1.

See Also

IsoTestBH

Examples

Run this code
## Not run: 
#   set.seed(1234)
#   x <- c(rep(1,3),rep(2,3),rep(3,3))
#   y1 <- matrix(rnorm(90, 1,1),10,9)  # 10 genes with no trends
#   y2 <- matrix(c(rnorm(30, 1,1), rnorm(30,2,1),
#                  rnorm(30,3,1)), 10, 9)  # 10 genes with increasing trends
#   y <- data.frame(rbind(y1, y2))  # y needs to be a data frame 
#   rp <- IsoRawp(x, y, niter = 1000)
#   rp
# ## End(Not run)

Run the code above in your browser using DataLab