Takes geochronology data as input and produces a five-column table with the variables, their uncertainties and error correlations as output. These can subsequently be used for York regression.
data2york(x, ...)# S3 method for default
data2york(x, format = 1, ...)
# S3 method for other
data2york(x, ...)
# S3 method for UPb
data2york(x, option = 1, tt = 0, ...)
# S3 method for ArAr
data2york(x, inverse = TRUE, ...)
# S3 method for ThPb
data2york(x, inverse = FALSE, ...)
# S3 method for KCa
data2york(x, inverse = FALSE, ...)
# S3 method for PbPb
data2york(x, inverse = TRUE, ...)
# S3 method for PD
data2york(x, exterr = FALSE, inverse = FALSE, ...)
# S3 method for UThHe
data2york(x, ...)
# S3 method for ThU
data2york(x, type = 2, generic = TRUE, ...)
a five-column table that can be used as input for
york
-regression.
a five or six column matrix OR an object of class
UPb
, PbPb
, ThPb
, ArAr
, ThU
,
UThHe
, or PD
(which includes objects of class
RbSr
, SmNd
, LuHf
and ReOs
),
generated by the read.data(...)
function
optional arguments
one of
1
or 2
: X
, s[X]
, Y
, s[Y]
,
rXY
; where rXY
is the error correlation between
X
and Y
; or
3
: X/Z
, s[X/Z]
, Y/Z
, s[Y/Z]
,
X/Y
, s[X/Y]
; for which the error correlations are
automatically computed from the redundancy of the three ratios.
one of
1
: Wetherill concordia ratios: X=07/35
,
sX=s[07/35]
, Y=06/38
, sY=s[06/38]
, rXY
.
2
: Tera-Wasserburg ratios: X=38/06
,
sX=s[38/06]
, Y=07/06
, sY=s[07/06]
, rXY
.
3
: X=38/06
, sX=s[38/06]
, Y=04/06
,
sY=s[04/06]
, rXY
(only valid if x$format=4,5
or 6
).
4
: X=35/07
, sX=s[35/07]
, Y=04/07
,
sY=s[04/07]
, rXY
(only valid if x$format=4,5
or 6
).
5
: U-Th-Pb concordia ratios: X=06/38
,
sX=s[06/38]
, Y=08/32
, sY=s[08/32]
,
rXY
(only valid if x$format=7,8
).
6
: X=38/06
, sX=s[38/06]
, Y=08/06
,
sY=s[08/06]
, rXY
(only valid if x$format=7,8
).
7
: X=35/07
, sX=s[35/07]
, Y=08/07
,
sY=s[08/07]
, rXY
(only valid if x$format=7,8
).
8
: X=32/08
, sX=s[32/08]
, Y=06/08
,
sY=s[06/08]
, rXY
(only valid if x$format=7,8
).
9
: X=32/08
, sX=s[32/08]
, Y=07/08
,
sY=s[07/08]
, rXY
(only valid if x$format=7,8
).
the age of the sample. This is only used if
x$format=7
or 8
, in order to calculate the
inherited \({}^{208}\)Pb/\({}^{232}\)Th ratio.
toggles between normal and inverse isochron
ratios. data2york
returns five columns X
,
s[X]
, Y
, s[Y]
and r[X,Y]
.
If inverse=TRUE
, then X
=
\({}^{204}\)Pb/\({}^{206}\)Pb and Y
=
\({}^{207}\)Pb/\({}^{206}\)Pb (if x
has class
PbPb
), or X
= \({}^{232}\)Th/\({}^{208}\)Pb and
Y
= \({}^{204}\)Pb/\({}^{208}\)Pb (if x
has class
ThPb
), or X
= \({}^{39}\)Ar/\({}^{40}\)Ar and
Y
= \({}^{36}\)Ar/\({}^{40}\)Ar (if x
has class
ArAr
), or X
= \({}^{40}\)K/\({}^{40}\)Ca and
Y
= \({}^{44}\)Ca/\({}^{40}\)Ca (if x
has class
KCa
), or X
= \({}^{87}\)Rb/\({}^{87}\)Sr and
Y
= \({}^{86}\)Sr/\({}^{87}\)Sr (if x
has class
RbSr
), or X
= \({}^{147}\)Sm/\({}^{143}\)Nd and
Y
= \({}^{144}\)Nd/\({}^{143}\)Nd (if x
has class
SmNd
), or X
= \({}^{187}\)Re/\({}^{187}\)Os and
Y
= \({}^{188}\)Os/\({}^{187}\)Os (if x
has class
ReOs
), or X
= \({}^{176}\)Lu/\({}^{176}\)Hf and
Y
= \({}^{177}\)Hf/\({}^{176}\)Hf (if x
has class
LuHf
).
If inverse=FALSE
, then X
=
\({}^{206}\)Pb/\({}^{204}\)Pb and Y
=
\({}^{207}\)Pb/\({}^{204}\)Pb (if x
has class
PbPb
), or X
= \({}^{232}\)Th/\({}^{204}\)Pb and
Y
= \({}^{208}\)Pb/\({}^{204}\)Pb (if x
has class
ThPb
), or X
= \({}^{39}\)Ar/\({}^{36}\)Ar and
Y
= \({}^{40}\)Ar/\({}^{36}\)Ar (if x
has class
ArAr
), or X
= \({}^{40}\)K/\({}^{44}\)Ca and
Y
= \({}^{40}\)Ca/\({}^{44}\)Ca (if x
has class
KCa
), or X
= \({}^{87}\)Rb/\({}^{86}\)Sr and
Y
= \({}^{87}\)Sr/\({}^{86}\)Sr (if x
has class
RbSr
), or X
= \({}^{147}\)Sm/\({}^{144}\)Nd and
Y
= \({}^{143}\)Nd/\({}^{144}\)Nd (if x
has class
SmNd
), or X
= \({}^{187}\)Re/\({}^{188}\)Os and
Y
= \({}^{187}\)Os/\({}^{188}\)Os (if x
has class
ReOs
), or X
= \({}^{176}\)Lu/\({}^{177}\)Hf and
Y
= \({}^{176}\)Hf/\({}^{177}\)Hf (if x
has class
LuHf
).
If TRUE
, propagates the external uncertainties
(e.g. decay constants) into the output errors.
Return `Rosholt' or `Osmond' ratios?
Rosholt (type=1
) returns X=8/2
, sX=s[8/2]
,
Y=0/2
, sY=s[0/2]
, rXY
.
Osmond (type=2
) returns X=2/8
, sX=s[2/8]
,
Y=0/8
, sY=s[0/8]
, rXY
.
If TRUE
, uses the following column headers:
X
, sX
, Y
, sY
, rXY
.
If FALSE
and type=1
, uses U238Th232
,
errU238Th232
, Th230Th232
, errTh230Th232
, rXY
or if FALSE
and type=2
, uses Th232U238
,
errTh232U238
, Th230U238
, errTh230U238
, rXY
.
york
f <- system.file("RbSr1.csv",package="IsoplotR")
dat <- read.csv(f)
yorkdat <- data2york(dat)
fit <- york(yorkdat)
Run the code above in your browser using DataLab