This function returns a list of default values for the hyper-parameters.
default_hyperpars()
norm: hyper-parameters for normal and log-normal models
mu_reg_norm | mean in the priors for regression coefficients |
tau_reg_norm | precision in the priors for regression coefficients |
shape_tau_norm | shape parameter in Gamma prior for the precision of the (log-)normal distribution |
rate_tau_norm | rate parameter in Gamma prior for the precision of the (log-)normal distribution |
gamma: hyper-parameters for Gamma models
mu_reg_gamma | mean in the priors for regression coefficients |
tau_reg_gamma | precision in the priors for regression coefficients |
shape_tau_gamma | shape parameter in Gamma prior for the precision of the Gamma distribution |
rate_tau_gamma | rate parameter in Gamma prior for the precision of the Gamma distribution |
beta: hyper-parameters for beta models
mu_reg_beta | mean in the priors for regression coefficients |
tau_reg_beta | precision in the priors for regression coefficients |
shape_tau_beta | shape parameter in Gamma prior for the precision of the beta distribution |
rate_tau_beta | rate parameter in Gamma prior for precision of the of the beta distribution |
binom: hyper-parameters for binomial models
mu_reg_binom | mean in the priors for regression coefficients |
tau_reg_binom | precision in the priors for regression coefficients |
poisson: hyper-parameters for poisson models
mu_reg_poisson | mean in the priors for regression coefficients |
tau_reg_poisson | precision in the priors for regression coefficients |
multinomial: hyper-parameters for multinomial models
mu_reg_multinomial | mean in the priors for regression coefficients |
tau_reg_multinomial | precision in the priors for regression coefficients |
ordinal: hyper-parameters for ordinal models
mu_reg_ordinal | mean in the priors for regression coefficients |
tau_reg_ordinal | precision in the priors for regression coefficients |
mu_delta_ordinal | mean in the prior for the intercepts |
tau_delta_ordinal | precision in the priors for the intercepts |
ranef: hyper-parameters for the random effects variance-covariance matrices (when there is only one random effect a Gamma distribution is used instead of the Wishart distribution)
shape_diag_RinvD | shape parameter in Gamma prior for the diagonal
elements of RinvD |
rate_diag_RinvD | rate parameter in Gamma prior for the diagonal
elements of RinvD |
KinvD_expr | a character string that can be evaluated to calculate
the number of degrees of freedom in the Wishart
distribution used for the inverse of the
variance-covariance matrix for random effects,
depending on the number of random effects
nranef |
surv: parameters for survival models (survreg
, coxph
and JM
)
mu_reg_surv | mean in the priors for regression coefficients |
tau_reg_surv | precision in the priors for regression coefficients |
default_hyperpars()
# To change the hyper-parameters:
hyp <- default_hyperpars()
hyp$norm['rate_tau_norm'] <- 1e-3
mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, hyperpars = hyp, mess = FALSE)
Run the code above in your browser using DataLab