# the iris example used by knn(class)
library(class)
data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
# how to get predictions from knn(class)
pred <- knn(train, test, cl, k = 3, prob=TRUE)
# display the confusion matrix
table(pred,cl)
# view probabilities (only the highest probability is returned)
attr(pred,"prob")
# how to get predictions with knn.dist and knn.predict
x <- rbind(train,test)
kdist <- knn.dist(x)
pred <- knn.predict(1:75, 76:150, cl, kdist, k=3)
# display the confusion matrix
table(pred,cl)
# view probabilities (all class probabilities are returned)
knn.probability(1:75, 76:150, cl, kdist, k=3)
# to compare probabilites, rounding done for display purposes
p1 <- knn(train, test, cl, k = 3, prob=TRUE)
p2 <- round(knn.probability(1:75, 76:150, cl, kdist, k=3), digits=2)
table( round(attr(p1,"prob"), digits=2), apply(p2,2,max) )
# note any small differences in predictions are a result of
# both methods breaking ties in majority class randomly
Run the code above in your browser using DataLab