# NOT RUN {
# Create Mu and Sigma -----------------------------------------------------------
mu1 <- c(0, 0)
mu2 <- c(5, 3)
mu3 <- c(-4, 1)
Sigma1 <- matrix(c(4, 3, 3, 4), 2, 2)
Sigma2 <- matrix(c(3, 0.5, 0.5, 1), 2, 2)
Sigma3 <- matrix(c(5, 4, 4, 6), 2, 2)
# Mixed Normal Distribution -------------------------------------------------------
mus <- rbind(mu1, mu2, mu3)
Sigmas <- rbind(Sigma1, Sigma2, Sigma3)
props <- c(1/3, 1/3, 1/3)
# }
# NOT RUN {
xtrue=rmvnorm.mixt(n=1000, mus=mus, Sigmas=Sigmas, props=props)
roundvalue=2
xrounded=plyr::round_any(xtrue,roundvalue)
est <- dbivr(xrounded,roundvalue=roundvalue,burnin=5,samples=10)
#Plot corrected and Naive distribution
plot(est,trueX=xtrue)
#for comparison: plot true density
dens=dmvnorm.mixt(x=expand.grid(est$Mestimates$eval.points[[1]],est$Mestimates$eval.points[[2]]),
mus=mus, Sigmas=Sigmas, props=props)
dens=matrix(dens,nrow=length(est$gridx),ncol=length(est$gridy))
contour(dens,x=est$Mestimates$eval.points[[1]],y=est$Mestimates$eval.points[[2]],
xlim=c(min(est$gridx),max(est$gridx)),ylim=c(min(est$gridy),max(est$gridy)),main="True Density")
# }
Run the code above in your browser using DataLab