#max_timse_parallel
set.seed(9)
N <- 20 #number of observations
T <- c(40,80) #thresholds
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)
#a 20 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)
#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")
optimcontrol <- list(method="genoud",pop.size=200,optim.option=2)
integcontrol <- list(distrib="timse",n.points=400,init.distrib="MC")
integration.param <- integration_design(integcontrol=integcontrol,d=2,
lower=lower,upper=upper,model=model,
T=T)
batchsize <- 5 #number of new points
if (FALSE) {
obj <- max_timse_parallel(lower=lower,upper=upper,optimcontrol=optimcontrol,
batchsize=batchsize,T=T,model=model,
integration.param=integration.param,epsilon=0,imse=FALSE)
#5 optims in dimension 2 !
obj$par;obj$value #optimum in 5 new points
new.model <- update(object=model,newX=obj$par,newy=apply(obj$par,1,testfun),
cov.reestim=TRUE)
par(mfrow=c(1,2))
print_uncertainty(model=model,T=T,type="pn",lower=lower,upper=upper,
cex.points=2.5,main="probability of excursion")
print_uncertainty(model=new.model,T=T,type="pn",lower=lower,upper=upper,
new.points=batchsize,col.points.end="red",cex.points=2.5,
main="updated probability of excursion")
}
Run the code above in your browser using DataLab