#vorob_threshold
set.seed(9)
N <- 20 #number of observations
T <- 80 #threshold
testfun <- branin
#a 20 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)
#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")
if (FALSE) {
###we need to compute some additional arguments:
#integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50,distrib="sobol")
obj <- integration_design(integcontrol=integcontrol,
lower=c(0,0),upper=c(1,1),model=model,T=T)
integration.points <- obj$integration.points
pred <- predict_nobias_km(object=model,newdata=integration.points,
type="UK",se.compute=TRUE)
pn <- pnorm((pred$mean-T)/pred$sd)
vorob_threshold(pn)
}
Run the code above in your browser using DataLab