Learn R Programming

LFM (version 0.2.0)

SAPC_LFM: Apply the SAPC method to the Laplace factor model

Description

This function calculates several metrics for the SAPC method, including the estimated factor loadings and uniquenesses, and various error metrics comparing the estimated matrices with the true matrices.

Usage

SAPC_LFM(data, m, A, D, p)

Value

A list of metrics including:

Asa

Estimated factor loadings matrix obtained from the SAPC analysis.

Dsa

Estimated uniquenesses vector obtained from the SAPC analysis.

MSESigmaA

Mean squared error of the estimated factor loadings (Asa) compared to the true loadings (A).

MSESigmaD

Mean squared error of the estimated uniquenesses (Dsa) compared to the true uniquenesses (D).

LSigmaA

Loss metric for the estimated factor loadings (Asa), indicating the relative error compared to the true loadings (A).

LSigmaD

Loss metric for the estimated uniquenesses (Dsa), indicating the relative error compared to the true uniquenesses (D).

Arguments

data

The data used in the SAPC analysis.

m

The number of common factors.

A

The true factor loadings matrix.

D

The true uniquenesses matrix.

p

The number of variables.

Examples

Run this code
library(SOPC)
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- SAPC_LFM(data, m, A, D, p)
print(results)

Run the code above in your browser using DataLab