# NOT RUN {
# LM model for categorical responses with covariates on the latent model
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]
# Categories rescaled to vary from 0 (<U+201C>poor<U+201D>) to 4 (<U+201C>excellent<U+201D>)
SRHS$srhs <- 5 - SRHS$srhs
out1 <- lmest(responsesFormula = srhs ~ NULL,
index = c("id","t"),
data = SRHS,
k = 3,
tol = 1e-8,
start = 1,
modBasic = 1,
out_se = TRUE,
seed = 123)
boot1 <- bootstrap(out1)
out2 <- lmest(responsesFormula = srhs ~ NULL,
latentFormula = ~
I(gender - 1) +
I( 0 + (race == 2) + (race == 3)) +
I(0 + (education == 4)) +
I(0 + (education == 5)) +
I(age - 50) + I((age-50)^2/100),
index = c("id","t"),
data = SRHS,
k = 2,
paramLatent = "multilogit",
start = 0)
boot2 <- bootstrap(out2)
# LM model for continous responses without covariates
require(mmm)
data(multiLongGaussian)
t <- rep(1:4, times = max(multiLongGaussian$ID))
multiLongGaussian <- data.frame(t = t, multiLongGaussian)
out3 <- lmestCont(responsesFormula = resp1 + resp2 ~ NULL,
index = c("ID", "t"),
data = multiLongGaussian,
k =3,
modBasic=1,
tol=10^-5)
boot3 <- bootstrap(out3)
out4 <- lmestCont(responsesFormula = resp1 + resp2 ~ NULL,
latentFormula = ~ X + time,
index = c("ID", "t"),
data = multiLongGaussian,
k = 3,
output=TRUE)
boot4 <- bootstrap(out4)
# }
Run the code above in your browser using DataLab