Learn R Programming

LMest (version 3.0.0)

bootstrap: Parametric bootstrap

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

Usage

bootstrap(est, ...)
# S3 method for LMbasic
bootstrap(est, n = 1000, B = 100, seed = NULL, ...)
# S3 method for LMbasiccont
bootstrap(est, n = 1000, B=100, seed = NULL, ...)
# S3 method for LMlatent
bootstrap(est, B = 100, seed = NULL, ...)
# S3 method for LMlatentcont
bootstrap(est, B = 100, seed = NULL, ...)

Arguments

est

an object obtained from a call to lmest and lmestCont

n

sample size

B

number of bootstrap samples

seed

an integer value with the random number generator state

further arguments

Value

Average of bootstrap estimates and standard errors for the model parameters in est object.

Examples

Run this code
# NOT RUN {
# LM model for categorical responses with covariates on the latent model

data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]

# Categories rescaled to vary from 0 (<U+201C>poor<U+201D>) to 4 (<U+201C>excellent<U+201D>)

SRHS$srhs <- 5 - SRHS$srhs

out1 <- lmest(responsesFormula = srhs ~ NULL,
              index = c("id","t"),
              data = SRHS,
              k = 3,
              tol = 1e-8,
              start = 1,
              modBasic = 1,
              out_se = TRUE,
              seed = 123)

boot1 <- bootstrap(out1)

out2 <- lmest(responsesFormula = srhs ~ NULL,
              latentFormula =  ~
              I(gender - 1) +
              I( 0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) +
              I(age - 50) + I((age-50)^2/100),
              index = c("id","t"),
              data = SRHS,
              k = 2,
              paramLatent = "multilogit",
              start = 0)

boot2 <- bootstrap(out2)

# LM model for continous responses without covariates 

require(mmm)
data(multiLongGaussian)

t <- rep(1:4, times  = max(multiLongGaussian$ID))
multiLongGaussian <- data.frame(t = t, multiLongGaussian)

out3 <- lmestCont(responsesFormula = resp1 + resp2 ~ NULL,
                  index = c("ID", "t"),
                  data = multiLongGaussian,
                  k =3,
                  modBasic=1,
                  tol=10^-5)

boot3 <- bootstrap(out3)

out4 <- lmestCont(responsesFormula = resp1 + resp2 ~ NULL,
                  latentFormula = ~ X + time,
                  index = c("ID", "t"),
                  data = multiLongGaussian,
                  k = 3,
                  output=TRUE)
                  
boot4 <- bootstrap(out4)
# }

Run the code above in your browser using DataLab