
Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.
bootstrap(est, ...)
# S3 method for LMbasic
bootstrap(est, n = 1000, B = 100, seed = NULL, ...)
# S3 method for LMbasiccont
bootstrap(est, n = 1000, B=100, seed = NULL, ...)
# S3 method for LMlatent
bootstrap(est, B = 100, seed = NULL, ...)
# S3 method for LMlatentcont
bootstrap(est, B = 100, seed = NULL, ...)
Average of bootstrap estimates and standard errors for the model parameters in est
object.
an object obtained from a call to lmest
and lmestCont
sample size
number of bootstrap samples
an integer value with the random number generator state
further arguments
Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini
if (FALSE) {
# LM model for categorical responses with covariates on the latent model
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]
# Categories rescaled to vary from 0 (“poor”) to 4 (“excellent”)
SRHS$srhs <- 5 - SRHS$srhs
out1 <- lmest(responsesFormula = srhs ~ NULL,
index = c("id","t"),
data = SRHS,
k = 3,
tol = 1e-8,
start = 1,
modBasic = 1,
out_se = TRUE,
seed = 123)
boot1 <- bootstrap(out1)
out2 <- lmest(responsesFormula = srhs ~ NULL,
latentFormula = ~
I(gender - 1) +
I( 0 + (race == 2) + (race == 3)) +
I(0 + (education == 4)) +
I(0 + (education == 5)) +
I(age - 50) + I((age-50)^2/100),
index = c("id","t"),
data = SRHS,
k = 2,
paramLatent = "multilogit",
start = 0)
boot2 <- bootstrap(out2)
# LM model for continous responses without covariates
data(data_long_cont)
out3 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
index = c("id", "time"),
data = data_long_cont,
k =3,
modBasic=1,
tol=10^-5)
boot3 <- bootstrap(out3)
# LM model for continous responses with covariates
out4 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
latentFormula = ~ X1 + X2,
index = c("id", "time"),
data = data_long_cont,
k = 3,
output=TRUE)
boot4 <- bootstrap(out4)
}
Run the code above in your browser using DataLab