if (FALSE) {
# example for the output from est_lm_basic
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
n <- sum(yv)
# fit the Basic LM model
k <- 3
est <- est_lm_basic(S, yv, k, mod = 1)
# decoding for a single sequence
out1 <- decoding(est, S[1,])
# decoding for all sequences
out2 <- decoding(est, S)
# example for the output from est_lm_cov_latent with difflogit parametrization
data(data_SRHS_long)
dataSRHS <- data_SRHS_long[1:1600,]
TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50,(dataSRHS$age-50)^2/100),
Y= dataSRHS$srhs)
# matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY
# matrix of covariates (for the first and the following occasions)
# colums are: gender,race,educational level (2 columns),age,age^2)
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]
# estimate the model
est <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, param = "difflogit")
# decoding for a single sequence
out1 <- decoding(est, S[1,,], X1[1,], X2[1,,])
# decoding for all sequences
out2 <- decoding(est, S, X1, X2)
}
Run the code above in your browser using DataLab