#
# Let us create the discrete autocorrelation wavelets for the Haar wavelet.
# We shall create up to scale 4.
#
D2ACWmat(J=-2, filter.number=1, family="DaubExPhase")
#Computing The two-dimensional (discrete) autocorrelation coefficients:
#
#The output will be structured as follows ....
#
#
#
#Levels 1 to 2 contain the vertical autocorrelation wavelet coefficients.
#
#Levels 3 to 4 contain the horizontal autocorrelation wavelet coefficients.
#
#Levels 5 to 6 contain the horizontal autocorrelation wavelet coefficients.
#
#
#
#Returning precomputed version
#Returning precomputed version
#Returning precomputed version
#Took NA seconds
# [,1] [,2] [,3] [,4] [,5] [,6] [,7]
# [1,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
# [2,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
# [3,] 0.0000 0.000 -0.2500 -0.50 -0.2500 0.000 0.0000
# [4,] 0.0000 0.000 0.5000 1.00 0.5000 0.000 0.0000
# [5,] 0.0000 0.000 -0.2500 -0.50 -0.2500 0.000 0.0000
# [6,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
# [7,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
# [8,] -0.0625 -0.125 -0.1875 -0.25 -0.1875 -0.125 -0.0625
# [9,] -0.1250 -0.250 -0.3750 -0.50 -0.3750 -0.250 -0.1250
#[10,] 0.0625 0.125 0.1875 0.25 0.1875 0.125 0.0625
#[11,] 0.2500 0.500 0.7500 1.00 0.7500 0.500 0.2500
#[12,] 0.0625 0.125 0.1875 0.25 0.1875 0.125 0.0625
#[13,] -0.1250 -0.250 -0.3750 -0.50 -0.3750 -0.250 -0.1250
#[14,] -0.0625 -0.125 -0.1875 -0.25 -0.1875 -0.125 -0.0625
#[15,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[16,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[17,] 0.0000 0.000 -0.2500 0.50 -0.2500 0.000 0.0000
#[18,] 0.0000 0.000 -0.5000 1.00 -0.5000 0.000 0.0000
#[19,] 0.0000 0.000 -0.2500 0.50 -0.2500 0.000 0.0000
#[20,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[21,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[22,] -0.0625 -0.125 0.0625 0.25 0.0625 -0.125 -0.0625
#[23,] -0.1250 -0.250 0.1250 0.50 0.1250 -0.250 -0.1250
#[24,] -0.1875 -0.375 0.1875 0.75 0.1875 -0.375 -0.1875
#[25,] -0.2500 -0.500 0.2500 1.00 0.2500 -0.500 -0.2500
#[26,] -0.1875 -0.375 0.1875 0.75 0.1875 -0.375 -0.1875
#[27,] -0.1250 -0.250 0.1250 0.50 0.1250 -0.250 -0.1250
#[28,] -0.0625 -0.125 0.0625 0.25 0.0625 -0.125 -0.0625
#[29,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[30,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[31,] 0.0000 0.000 0.2500 -0.50 0.2500 0.000 0.0000
#[32,] 0.0000 0.000 -0.5000 1.00 -0.5000 0.000 0.0000
#[33,] 0.0000 0.000 0.2500 -0.50 0.2500 0.000 0.0000
#[34,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[35,] 0.0000 0.000 0.0000 0.00 0.0000 0.000 0.0000
#[36,] 0.0625 0.125 -0.0625 -0.25 -0.0625 0.125 0.0625
#[37,] 0.1250 0.250 -0.1250 -0.50 -0.1250 0.250 0.1250
#[38,] -0.0625 -0.125 0.0625 0.25 0.0625 -0.125 -0.0625
#[39,] -0.2500 -0.500 0.2500 1.00 0.2500 -0.500 -0.2500
#[40,] -0.0625 -0.125 0.0625 0.25 0.0625 -0.125 -0.0625
#[41,] 0.1250 0.250 -0.1250 -0.50 -0.1250 0.250 0.1250
#[42,] 0.0625 0.125 -0.0625 -0.25 -0.0625 0.125 0.0625
Run the code above in your browser using DataLab