Learn R Programming

LaMa (version 2.0.3)

gamma2: Reparametrised gamma distribution

Description

Density, distribution function, quantile function and random generation for the gamma distribution reparametrised in terms of mean and standard deviation.

Usage

dgamma2(x, mean = 1, sd = 1, log = FALSE)

pgamma2(q, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

qgamma2(p, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

rgamma2(n, mean = 1, sd = 1)

Value

dgamma2 gives the density, pgamma2 gives the distribution function, qgamma2 gives the quantile function, and rgamma2 generates random deviates.

Arguments

x, q

vector of quantiles

mean

mean parameter, must be positive scalar.

sd

standard deviation parameter, must be positive scalar.

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE, probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).

p

vector of probabilities

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

This implementation allows for automatic differentiation with RTMB.

Examples

Run this code
x = rgamma2(1)
d = dgamma2(x)
p = pgamma2(x)
q = qgamma2(p)

Run the code above in your browser using DataLab