N = 2
# time-varying mean dwell times
n = 100
z = runif(n)
beta = matrix(c(2, 2, 0.1, -0.1), nrow = 2)
Lambda = exp(cbind(1, z) %*% t(beta))
sizes = c(15, 15) # approximating chain with 30 states
# state dwell-time distributions
dm = lapply(1:N, function(i) sapply(1:sizes[i]-1, dpois, lambda = Lambda[,i]))
## homogeneous conditional transition probabilites
# diagonal elements are zero, rowsums are one
omega = matrix(c(0,1,1,0), nrow = N, byrow = TRUE)
# calculating extended-state-space t.p.m.s
Gamma = tpm_ihsmm(omega, dm)
## inhomogeneous conditional transition probabilites
# omega can be an array
omega = array(omega, dim = c(N,N,n))
# calculating extended-state-space t.p.m.s
Gamma = tpm_ihsmm(omega, dm)
Run the code above in your browser using DataLab