# NOT RUN {
# create a Gaussian N(1, 2) input
Gauss.input <- create_LambertW_input("normal", beta = c(1, 2))
# create a heavy-tailed version of a normal
# gamma = 0, alpha = 1 are set by default; beta comes from input
params <- list(delta = c(0.3))
LW.Gauss <- create_LambertW_output(LambertW.input = Gauss.input,
theta = params)
LW.Gauss
op <- par(no.readonly = TRUE)
par(mfrow = c(2, 1), mar = c(3, 3, 2, 1))
curve(LW.Gauss$d(x, params), -7, 10, col = "red")
# parameter will get detected automatically from the input
curve(LW.Gauss$d(x), -7, 10, col = "blue") # same in blue;
# compare to the input case (i.e. set delta = 0)
params.0 <- params
params.0$delta <- 0
# to evaluate the RV at a different parameter value,
# it is necessary to pass the new parameter
curve(LW.Gauss$d(x, params.0), -7, 10, add = TRUE, col = 1) #' par(op)
curve(LW.Gauss$p(x, params), -7, 10, col = "red")
curve(LW.Gauss$p(x, params.0), -7, 10, add = TRUE, col = 1)
test_normality(LW.Gauss$r(n = 100), add.legend = FALSE)
## generate a positively skewed version of a shifted, scaled t_3
t.input <- create_LambertW_input("t", beta = c(2, 1, 3))
t.input
params <- list(gamma = 0.05) # skew it
LW.t <- create_LambertW_output(LambertW.input = t.input, theta = params)
LW.t
plot(t.input$d, -7, 11, col = 1)
plot(LW.t$d, -7, 11, col = 2, add = TRUE)
abline(v = t.input$beta["location"], lty = 2)
# draw samples from the skewed t_3
yy <- LW.t$r(n = 100)
test_normality(yy)
### create a skewed exponential distribution
exp.input <- create_LambertW_input("exp", beta = 1)
plot(exp.input)
params <- list(gamma = 0.2)
LW.exp <- create_LambertW_output(exp.input, theta = params)
plot(LW.exp)
# create a heavy-tail exponential distribution
params <- list(delta = 0.2)
LW.exp <- create_LambertW_output(exp.input, theta = params)
plot(LW.exp)
# create a skewed chi-square distribution with 5 df
chi.input <- create_LambertW_input("chisq", beta = 5)
plot(chi.input)
params <- list(gamma = sqrt(2)*0.2)
LW.chi <- create_LambertW_output(chi.input, theta = params)
plot(LW.chi)
# a demo on how a user-defined U input needs to look like
user.tmp <- list(d = function(u, beta) dnorm(u),
r = function(n, beta) rnorm(n),
p = function(u, beta) pnorm(u),
q = function(p, beta) qnorm(p),
beta2tau = function(beta) {
c(mu_x = beta[1], sigma_x = beta[2],
gamma = 0, alpha = 1, delta = 0)
},
distname = "MyNormal",
is.non.negative = FALSE)
my.input <- create_LambertW_input(input.u = user.tmp, beta = c(0, 1))
my.input
plot(my.input)
# }
Run the code above in your browser using DataLab