## Not run: 
#  #### AN ARTICIAL EXAMPLE ####
# 
#  library(LaplaceDeconv)
#  par(mfrow=c(1,1))
#  set.seed(29102015)
# 
#  sigma=0.02
#  a = 1
#  t = seq(0,5,l=100)
#  g = 20*t^2*exp(-5*t)
#  f.coef = c(0.4,0.02,0.01)
# 
#  # compute the Laplace convolution from g, kernel computed at times t, and the function
#  # described by its decomposition in Laguerre function basis with scale a :
#  fg = LaguerreLaplaceConvolution(t,g,f.coef,a)
# 
#  # the noisy observations :
#  Y = fg+sigma*rnorm(length(fg))
# 
#  # estimation of f from the observation and the kernel :
#  L = LagLaplDeconv(Y,g,t,sigma)
#  matplot(t,cbind(g,MakeLaguerreMatrix(a,3)(t)%*%f.coef,fg,L$q.hat,L$f.hat,Y),lty=1,
#    type=c('b',rep('l',4),'p'),ylab='',pch='x')
# 
#  # display results of estimation
#  legend('topright',lty=c(rep(1,5),0),pch=c('x',rep('',4),'x'),
#    legend=c(
#      'g: partially observed kernel',
#      'f: unknown',
#      'q=fxg: unknown convolution',
#      expression(hat(q)*': plug-in convolution'),
#      expression(hat(f)*': estimation of f'),
#      'Y: observations'),
#    col=1:6)
#  ## End(Not run)
 ## Not run: 
#  #### A REAL EXAMPLE USING DCE-MRI DATA FROM A TUMOR ####
# 
#  library(LaplaceDeconv)
#  par(mfrow=c(1,2))
# 
#  # load data from patient before the treatment
#  data(EX_DCEMRI_t0)
# 
#  # display AIF and tumoral enhancements
#  matplot(ex_dcemri$times,
#    cbind(ex_dcemri$AIF,ex_dcemri$TUM_1,ex_dcemri$TUM_2,ex_dcemri$TUM_3),
#    ylab='',lty=1,type=c('b',rep('p',3)),pch='+',main='Observations')
#  legend('topright',pch='+',legend=c('AIF','TUM_1','TUM_2','TUM_3'),col=1:4)
# 
#  # estimation of the contrast agent survival functions
#  L1 = LagLaplDeconv(ex_dcemri$TUM_1,ex_dcemri$AIF,ex_dcemri$times,ex_dcemri$sigma)
#  L2 = LagLaplDeconv(ex_dcemri$TUM_2,ex_dcemri$AIF,ex_dcemri$times,ex_dcemri$sigma)
#  L3 = LagLaplDeconv(ex_dcemri$TUM_3,ex_dcemri$AIF,ex_dcemri$times,ex_dcemri$sigma)
# 
#  matlines(ex_dcemri$times,cbind(L1$q.hat,L2$q.hat,L3$q.hat),type='l',lty=1,col=2:4)
# 
#  # display results of estimation
#  matplot(ex_dcemri$times,cbind(L1$f.hat,L2$f.hat,L3$f.hat),type='l',lty=1,col=2:4,
#    ylab='survival',main='Contrast agent survival fcts')
#  legend('topright',lty=1,col=2:4,
#    legend=c(
#      paste0('TUM_1 - a.hat=',round(L1$a.hat,digits=2)),
#      paste0('TUM_2 - a.hat=',round(L2$a.hat,digits=2)),
#      paste0('TUM_3 - a.hat=',round(L3$a.hat,digits=2))
#      )
#    )
#  ## End(Not run)
Run the code above in your browser using DataLab