Learn R Programming

LearnBayes (version 2.15.1)

bayesresiduals: Computation of posterior residual outlying probabilities for a linear regression model

Description

Computes the posterior probabilities that Bayesian residuals exceed a cutoff value for a linear regression model with a noninformative prior

Usage

bayesresiduals(lmfit,post,k)

Arguments

lmfit

output of the regression function lm

post

list with components beta, matrix of simulated draws of regression parameter, and sigma, vector of simulated draws of sampling standard deviation

k

cut-off value that defines an outlier

Value

vector of posterior outlying probabilities

Examples

Run this code
# NOT RUN {
chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1)
temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3)
X=cbind(1,chirps)
lmfit=lm(temp~X)
m=1000
post=blinreg(temp,X,m)
k=2
bayesresiduals(lmfit,post,k)
# }

Run the code above in your browser using DataLab