powered by
Implements a Metropolis-within-Gibbs sampling algorithm for an arbitrary real-valued posterior density defined by the user
gibbs(logpost,start,m,scale,...)
function defining the log posterior density
array with a single row that gives the starting value of the parameter vector
the number of iterations of the chain
vector of scale parameters for the random walk Metropolis steps
data that is used in the function logpost
a matrix of simulated values where each row corresponds to a value of the vector parameter
vector of acceptance rates of the Metropolis steps of the algorithm
# NOT RUN { data=c(6,2,3,10) start=array(c(1,1),c(1,2)) m=1000 scale=c(2,2) s=gibbs(logctablepost,start,m,scale,data) # }
Run the code above in your browser using DataLab