Learn R Programming

LearnBayes (version 2.15.1)

groupeddatapost: Log posterior of normal parameters when data is in grouped form

Description

Computes the log posterior density of (M,log S) for normal sampling where the data is observed in grouped form

Usage

groupeddatapost(theta,data)

Arguments

theta

vector of parameter values M and log S

data

list with components int.lo, a vector of left endpoints, int.hi, a vector of right endpoints, and f, a vector of bin frequencies

Value

value of the log posterior

Examples

Run this code
# NOT RUN {
int.lo=c(-Inf,10,15,20,25)
int.hi=c(10,15,20,25,Inf)
f=c(2,5,8,4,2)
data=list(int.lo=int.lo,int.hi=int.hi,f=f)
theta=c(20,1)
groupeddatapost(theta,data)
# }

Run the code above in your browser using DataLab