Learn R Programming

LocalControl (version 1.1.4)

UPSnnltd: Nearest Neighbor Distribution of LTDs in Unsupervised Propensiy Scoring

Description

For a given number of patient clusters in baseline X-covariate space, UPSnnltd() characterizes the distribution of Nearest Neighbor "Local Treatemnt Differences" (LTDs) on a specified Y-outcome variable.

Usage

UPSnnltd(envir, numclust)

Value

An output list object of class UPSnnltd:

hiclus

Name of clustering object created by UPShclus().

dframe

Name of data.frame containing X, t & Y variables.

trtm

Name of treatment factor variable.

yvar

Name of outcome Y variable.

numclust

Number of clusters requested.

actclust

Number of clusters actually produced.

scedas

Scedasticity assumption: "homo" or "hete"

PStdif

Character string describing the treatment difference.

nnhbindf

Vector containing cluster number for each patient.

rawmean

Unadjusted outcome mean by treatment group.

rawvars

Unadjusted outcome variance by treatment group.

rawfreq

Number of patients by treatment group.

ratdif

Unadjusted mean outcome difference between treatments.

ratsde

Standard error of unadjusted mean treatment difference.

binmean

Unadjusted mean outcome by cluster and treatment.

binvars

Unadjusted variance by cluster and treatment.

binfreq

Number of patients by bin and treatment.

awbdif

Across cluster average difference with cluster size weights.

awbsde

Standard error of awbdif.

wwbdif

Across cluster average difference, inverse variance weights.

wwbsde

Standard error of wwbdif.

faclev

Maximum number of different numerical values an outcome variable can assume without automatically being converted into a "factor" variable; faclev=1 causes a binary indicator to be treated as a continuous variable determining an average or proportion.

youtype

"contin"uous => only next eight outputs; "factor" => only last three outputs.

aovdiff

ANOVA summary for treatment main effect only.

form2

Formula for outcome differences due to bins and to treatment nested within bins.

bindiff

ANOVA summary for treatment nested within cluster.

sig2

Estimate of error mean square in nested model.

pbindif

Unadjusted treatment difference by cluster.

pbinsde

Standard error of the unadjusted difference by cluster.

pbinsiz

Cluster radii measure: square root of total number of patients.

symsiz

Symbol size of largest possible Snowball in a UPSnnltd() plot with 1 cluster.

factab

Marginal table of counts by Y-factor level and treatment.

cumchi

Cumulative Chi-Square statistic for interaction in the three-way, nested table.

cumdf

Degrees of-Freedom for the Cumulative Chi-Squared.

Arguments

envir

name of the working local control classic environment.

numclust

Number of clusters in baseline X-covariate space.

Author

Bob Obenchain <wizbob@att.net>

Details

Multiple calls to UPSnnltd(n) for varying numbers of clusters, n, are typically made after first invoking UPShclus() to hierarchically cluster patients in X-space and then invoking UPSaccum() to specify a Y outcome variable and a two-level treatment factor t. UPSnnltd(n) then determines the LTD Distribution corresponding to n clusters and, optionally, displays this distribution in a "Snowball" plot.

References

  • Obenchain RL. (2004) Unsupervised Propensity Scoring: NN and IV Plots. Proceedings of the American Statistical Association (on CD) 8 pages.

  • Obenchain RL. (2011) USPSinR.pdf USPS R-package vignette, 40 pages.

  • Rosenbaum PR, Rubin RB. (1983) The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 70: 41--55.

  • Rubin DB. (1980) Bias reduction using Mahalanobis metric matching. Biometrics 36: 293-298.

See Also

UPSivadj, UPSaccum and UPSgraph.