Last chance! 50% off unlimited learning
Sale ends in
This function calculates a number of descriptive statistics for estimates with a given standard error (SE), most fundamentally using error-weighted approaches.
calc_Statistics(
data,
weight.calc = "square",
digits = NULL,
n.MCM = NULL,
na.rm = TRUE
)
Returns a list with weighted and unweighted statistic measures.
data.frame or RLum.Results object (required):
for data.frame two columns: De (data[,1]
) and De error (data[,2]
).
To plot several data sets in one plot the data sets must be provided
as list
, e.g. list(data.1, data.2)
.
character:
type of weight calculation. One out of "reciprocal"
(weight is 1/error),
"square"
(weight is 1/error^2). Default is "square"
.
integer (with default):
round numbers to the specified digits.
If digits is set to NULL
nothing is rounded.
numeric (with default):
number of samples drawn for Monte Carlo-based statistics.
NULL
(the default) disables MC runs.
logical (with default):
indicating whether NA
values should be stripped before the computation proceeds.
0.1.7
Michael Dietze, GFZ Potsdam (Germany) , RLum Developer Team
Dietze, M., 2023. calc_Statistics(): Function to calculate statistic measures. Function version 0.1.7. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., 2023. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.23. https://CRAN.R-project.org/package=Luminescence
The option to use Monte Carlo Methods (n.MCM
) allows calculating
all descriptive statistics based on random values. The distribution of these
random values is based on the Normal distribution with De
values as
means and De_error
values as one standard deviation. Increasing the
number of MCM-samples linearly increases computation time. On a Lenovo X230
machine evaluation of 25 Aliquots with n.MCM = 1000 takes 0.01 s, with
n = 100000, ca. 1.65 s. It might be useful to work with logarithms of these
values. See Dietze et al. (2016, Quaternary Geochronology) and the function
plot_AbanicoPlot for details.
## load example data
data(ExampleData.DeValues, envir = environment())
## show a rough plot of the data to illustrate the non-normal distribution
plot_KDE(ExampleData.DeValues$BT998)
## calculate statistics and show output
str(calc_Statistics(ExampleData.DeValues$BT998))
if (FALSE) {
## now the same for 10000 normal distributed random numbers with equal errors
x <- as.data.frame(cbind(rnorm(n = 10^5, mean = 0, sd = 1),
rep(0.001, 10^5)))
## note the congruent results for weighted and unweighted measures
str(calc_Statistics(x))
}
Run the code above in your browser using DataLab