## load example data
data(ExampleData.DeValues, envir = environment())
## show a rough plot of the data to illustrate the non-normal distribution
plot_KDE(ExampleData.DeValues$BT998)
## calculate statistics and show output
str(calc_Statistics(ExampleData.DeValues$BT998))
if (FALSE) {
## now the same for 10000 normal distributed random numbers with equal errors
x <- as.data.frame(cbind(rnorm(n = 10^5, mean = 0, sd = 1),
rep(0.001, 10^5)))
## note the congruent results for weighted and unweighted measures
str(calc_Statistics(x))
}
Run the code above in your browser using DataLab