Learn R Programming

Luminescence (version 0.9.25)

merge_RLum.Data.Curve: Merge function for RLum.Data.Curve S4 class objects

Description

Function allows merging of RLum.Data.Curve objects in different ways

Usage

merge_RLum.Data.Curve(object, merge.method = "mean", method.info)

Value

Returns an RLum.Data.Curve object.

Arguments

object

list of RLum.Data.Curve (required): list of S4 objects of class RLum.Curve.

merge.method

character (required): method for combining of the objects, e.g. 'mean', 'sum', see details for further information and allowed methods. Note: Elements in slot info will be taken from the first curve in the list.

method.info

numeric (optional): allows to specify how info elements of the input objects are combined, e.g. 1 means that just the elements from the first object are kept, 2 keeps only the info elements from the 2 object etc. If nothing is provided all elements are combined.

S3-generic support

This function is fully operational via S3-generics: +, -, /, *, merge

Function version

0.2.1

Author

Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany) , RLum Developer Team

How to cite

Kreutzer, S., 2024. merge_RLum.Data.Curve(): Merge function for RLum.Data.Curve S4 class objects. Function version 0.2.1. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., 2024. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.25. https://r-lum.github.io/Luminescence/

Details

This function simply allowing to merge RLum.Data.Curve objects without touching the objects itself. Merging is always applied on the 2nd column of the data matrix of the object.

Supported merge operations are RLum.Data.Curve

"sum"

All count values will be summed up using the function rowSums.

"mean"

The mean over the count values is calculated using the function rowMeans.

"median"

The median over the count values is calculated using the function matrixStats::rowMedians.

"sd"

The standard deviation over the count values is calculated using the function matrixStats::rowSds.

"var"

The variance over the count values is calculated using the function matrixStats::rowVars.

"min"

The min values from the count values is chosen using the function matrixStats::rowMins.

"max"

The max values from the count values is chosen using the function matrixStats::rowMins.

"append"

Appends count values of all curves to one combined data curve. The channel width is automatically re-calculated, but requires a constant channel width of the original data.

"-"

The row sums of the last objects are subtracted from the first object.

"*"

The row sums of the last objects are multiplied with the first object.

"/"

Values of the first object are divided by row sums of the last objects.

See Also

merge_RLum, RLum.Data.Curve

Examples

Run this code


##load example data
data(ExampleData.XSYG, envir = environment())

##grep first and 3d TL curves
TL.curves  <- get_RLum(OSL.SARMeasurement$Sequence.Object, recordType = "TL (UVVIS)")
TL.curve.1 <- TL.curves[[1]]
TL.curve.3 <- TL.curves[[3]]

##plot single curves
plot_RLum(TL.curve.1)
plot_RLum(TL.curve.3)

##subtract the 1st curve from the 2nd and plot
TL.curve.merged <- merge_RLum.Data.Curve(list(TL.curve.3, TL.curve.1), merge.method = "/")
plot_RLum(TL.curve.merged)

Run the code above in your browser using DataLab