Learn R Programming

Luminescence (version 0.9.25)

plot_RLum.Analysis: Plot function for an RLum.Analysis S4 class object

Description

The function provides a standardised plot output for curve data of an RLum.Analysis S4 class object

The function produces a multiple plot output. A file output is recommended (e.g., pdf).

curve.transformation

This argument allows transforming continuous wave (CW) curves to pseudo (linear) modulated curves. For the transformation, the functions of the package are used. Currently, it is not possible to pass further arguments to the transformation functions. The argument works only for ltype OSL and IRSL.

Please note: The curve transformation within this functions works roughly, i.e. every IRSL or OSL curve is transformed, without considering whether it is measured with the PMT or not! However, for a fast look it might be helpful.

Usage

plot_RLum.Analysis(
  object,
  subset = NULL,
  nrows,
  ncols,
  abline = NULL,
  combine = FALSE,
  records_max = NULL,
  curve.transformation,
  plot.single = FALSE,
  ...
)

Value

Returns multiple plots.

Arguments

object

RLum.Analysis (required): S4 object of class RLum.Analysis

subset

named list (optional): subsets elements for plotting. The arguments in the named list will be directly passed to the function get_RLum (e.g., subset = list(curveType = "measured"))

nrows

integer (optional): sets number of rows for plot output, if nothing is set the function tries to find a value.

ncols

integer (optional): sets number of columns for plot output, if nothing is set the function tries to find a value.

abline

list (optional): allows to add ab-lines to the plot. Argument are provided in a list and will be forward to the function abline, e.g., list(v = c(10, 100)) adds two vertical lines add 10 and 100 to all plots. In contrast list(v = c(10), v = c(100) adds a vertical at 10 to the first and a vertical line at 100 to the 2nd plot.

combine

logical (with default): allows to combine all RLum.Data.Curve objects in one single plot.

records_max

numeric (optional): limits number of records shown if combine = TRUE. Shown are always the first and the last curve, the other number of curves to be shown a distributed evenly, this may result in fewer curves plotted as specified. This parameter has only an effect for n > 2.

curve.transformation

character (optional): allows transforming CW-OSL and CW-IRSL curves to pseudo-LM curves via transformation functions. Allowed values are: CW2pLM, CW2pLMi, CW2pHMi and CW2pPMi. See details.

plot.single

logical (with default): global par settings are considered, normally this should end in one plot per page

...

further arguments and graphical parameters will be passed to the plot function.

Supported arguments: main, mtext, log, lwd, lty type, pch, col, norm (see plot_RLum.Data.Curve), xlim,ylim, xlab, ylab, ...

and for combine = TRUE also: sub_title, legend, legend.text, legend.pos (typical plus 'outside'), legend.col, smooth.

All arguments can be provided as vector or list to gain in full control of all plot settings.

Function version

0.3.15

Author

Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany) , RLum Developer Team

How to cite

Kreutzer, S., 2024. plot_RLum.Analysis(): Plot function for an RLum.Analysis S4 class object. Function version 0.3.15. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., 2024. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.25. https://r-lum.github.io/Luminescence/

See Also

plot, plot_RLum, plot_RLum.Data.Curve

Examples

Run this code

##load data
data(ExampleData.BINfileData, envir = environment())

##convert values for position 1
temp <- Risoe.BINfileData2RLum.Analysis(CWOSL.SAR.Data, pos=1)

##(1) plot (combine) TL curves in one plot
plot_RLum.Analysis(
temp,
subset = list(recordType = "TL"),
combine = TRUE,
norm = TRUE,
abline = list(v = c(110))
)

##(2) same as example (1) but using
## the argument smooth = TRUE
plot_RLum.Analysis(
temp,
subset = list(recordType = "TL"),
combine = TRUE,
norm = TRUE,
smooth = TRUE,
abline = list(v = c(110))
)

Run the code above in your browser using DataLab