Function to calculate the fast ratio of quartz CW-OSL single grain or single aliquot curves after Durcan & Duller (2011).
This function follows the equations of Durcan & Duller (2011). The energy
required to reduce the fast and medium quartz OSL components to x
and
x2
% respectively using eq. 3 to determine channels L2 and L3 (start
and end). The fast ratio is then calculated from: \((L1-L3)/(L2-L3)\).
calc_FastRatio(
object,
stimulation.power = 30.6,
wavelength = 470,
sigmaF = 2.6e-17,
sigmaM = 4.28e-18,
Ch_L1 = 1,
Ch_L2 = NULL,
Ch_L3 = NULL,
x = 1,
x2 = 0.1,
dead.channels = c(0, 0),
fitCW.sigma = FALSE,
fitCW.curve = FALSE,
plot = TRUE,
...
)
Returns a plot (optional) and an S4 object of type RLum.Results.
The slot data
contains a list with the following elements:
data.frame summary of all relevant results
the original input data
RLum.Results object if either fitCW.sigma
or fitCW.curve
is TRUE
list of used arguments
call the function call
RLum.Analysis, RLum.Data.Curve or data.frame (required): x, y data of measured values (time and counts).
numeric (with default): Stimulation power in mW/cm²
numeric (with default): Stimulation wavelength in nm
numeric (with default): Photoionisation cross-section (cm²) of the fast component. Default value after Durcan & Duller (2011).
numeric (with default): Photoionisation cross-section (cm²) of the medium component. Default value after Durcan & Duller (2011).
numeric (with default): An integer specifying the channel for L1.
numeric (optional): An integer specifying the channel for L2.
numeric (optional):
A vector of length 2 with integer values specifying the start and end
channels for L3 (e.g., c(40, 50)
), with the second component greater
than or equal to the first.
numeric (with default): Percentage of signal remaining from the fast component. Used to define the location of L2 and L3 (start).
numeric (with default): Percentage of signal remaining from the medium component. Used to define the location of L3 (end).
numeric (with default):
Vector of length 2 in the form of c(x, y)
.
Channels that do not contain OSL data, i.e. at the start or end of measurement.
logical (optional):
fit CW-OSL curve using fit_CWCurve to calculate sigmaF
and sigmaM
(experimental).
logical (optional): fit CW-OSL curve using fit_CWCurve and derive the counts of L2 and L3 from the fitted OSL curve (experimental).
logical (with default): enable/disable the plot output.
available options: verbose
(logical).
Further arguments passed to fit_CWCurve.
0.1.1
King, G.E., Durcan, J., Burow, C., 2025. calc_FastRatio(): Calculate the Fast Ratio for CW-OSL curves. Function version 0.1.1. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., Steinbuch, L., Boer, A.d., 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.0.0. https://r-lum.github.io/Luminescence/
Georgina E. King, University of Bern (Switzerland)
Julie A. Durcan, University of Oxford (United Kingdom)
Christoph Burow, University of Cologne (Germany)
, RLum Developer Team
Durcan, J.A. & Duller, G.A.T., 2011. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiation Measurements 46, 1065-1072.
Madsen, A.T., Duller, G.A.T., Donnelly, J.P., Roberts, H.M. & Wintle, A.G., 2009. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating. Geomorphology 109, 36-45.
Further reading
Steffen, D., Preusser, F. & Schlunegger, 2009. OSL quartz age underestimation due to unstable signal components. Quaternary Geochronology 4, 353-362.
fit_CWCurve, get_RLum, RLum.Analysis, RLum.Results, RLum.Data.Curve
# load example CW-OSL curve
data("ExampleData.CW_OSL_Curve")
# calculate the fast ratio w/o further adjustments
res <- calc_FastRatio(ExampleData.CW_OSL_Curve)
# show the summary table
get_RLum(res)
Run the code above in your browser using DataLab