## load example data
data(ExampleData.DeValues, envir = environment())
ExampleData.DeValues <- convert_Second2Gray(
  ExampleData.DeValues$BT998, c(0.0438,0.0019))
## plot the example data straightforward
plot_RadialPlot(data = ExampleData.DeValues)
## now with linear z-scale
plot_RadialPlot(
  data = ExampleData.DeValues,
  log.z = FALSE)
## now with output of the plot parameters
plot1 <- plot_RadialPlot(
  data = ExampleData.DeValues,
  log.z = FALSE,
  output = TRUE)
plot1
plot1$zlim
## now with adjusted z-scale limits
plot_RadialPlot(
  data = ExampleData.DeValues,
  log.z = FALSE,
  xlim = c(0, 5),
  zlim = c(100, 200))
## now the two plots with serious but seasonally changing fun
#plot_RadialPlot(data = data.3, fun = TRUE)
## now with user-defined central value, in log-scale again
plot_RadialPlot(
  data = ExampleData.DeValues,
  central.value = 150)
## now with a rug, indicating individual De values at the z-scale
plot_RadialPlot(
  data = ExampleData.DeValues,
  rug = TRUE)
## now with legend, colour, different points and smaller scale
plot_RadialPlot(
  data = ExampleData.DeValues,
  legend.text = "Sample 1",
  col = "tomato4",
  bar.col = "peachpuff",
  pch = "R",
  cex = 0.8)
## now without 2-sigma bar, y-axis, grid lines and central value line
plot_RadialPlot(
  data = ExampleData.DeValues,
  bar.col = "none",
  grid.col = "none",
  y.ticks = FALSE,
  lwd = 0)
## now with user-defined axes labels
plot_RadialPlot(
  data = ExampleData.DeValues,
  xlab = c("Data error (%)", "Data precision"),
  ylab = "Scatter",
  zlab = "Equivalent dose [Gy]")
## now with minimum, maximum and median value indicated
plot_RadialPlot(
  data = ExampleData.DeValues,
  central.value = 150,
  stats = c("min", "max", "median"))
## now with a brief statistical summary
plot_RadialPlot(
  data = ExampleData.DeValues,
  summary = c("n", "in.2s"))
## now with another statistical summary as subheader
plot_RadialPlot(
  data = ExampleData.DeValues,
  summary = c("mean.weighted", "median"),
  summary.pos = "sub")
## now the data set is split into sub-groups, one is manipulated
data.1 <- ExampleData.DeValues[1:15,]
data.2 <- ExampleData.DeValues[16:25,] * 1.3
## now a common dataset is created from the two subgroups
data.3 <- list(data.1, data.2)
## now the two data sets are plotted in one plot
plot_RadialPlot(data = data.3)
## now with some graphical modification
plot_RadialPlot(
  data = data.3,
  col = c("darkblue", "darkgreen"),
  bar.col = c("lightblue", "lightgreen"),
  pch = c(2, 6),
  summary = c("n", "in.2s"),
  summary.pos = "sub",
  legend = c("Sample 1", "Sample 2"))
Run the code above in your browser using DataLab