if (FALSE) {
# Create an Interval-Data object containing the intervals for characteristics
# of 27 cars models.
CarsIdt <- IData(Cars[1:8],VarNames=c("Price","EngineCapacity","TopSpeed","Acceleration"))
# Estimate parameters by the full trimmed maximum likelihood estimator,
# using a two-step procedure to select the trimming parameter, a reweighed
# MCD estimate, and the classical 97.5% chi-square quantile cut-offs.
CarsTE1 <- fulltle(CarsIdt)
cat("Cars data -- normal maximum trimmed likelihood estimation results:\n")
print(CarsTE1)
# Estimate parameters by the full trimmed maximum likelihood estimator, using
# the triming parameter that maximizes breakdown, and a reweighed MCD estimate
# based on the 97.5% quantiles of Hardin and Rocke adjusted F distributions.
CarsTE2 <- fulltle(CarsIdt,alpha=0.5,getalpha=FALSE,rawMD2Dist="HardRockeAdjF")
cat("Cars data -- normal maximum trimmed likelihood estimation results:\n")
print(CarsTE2)
# Estimate parameters by the full trimmed maximum likelihood estimator, using
# a two-step procedure to select the trimming parameter, and a reweighed MCD estimate
# based on Hardin and Rocke adjusted F distributions, 95% quantiles, and
# the Cerioli Beta and F distributions together with his iterated procedure
# to identify outliers in the first step.
CarsTE3 <- fulltle(CarsIdt,rawMD2Dist="HardRockeAdjF",eta=0.05,MD2Dist="CerioliBetaF",
multiCmpCor="iterstep")
cat("Cars data -- normal maximum trimmed likelihood estimation results:\n")
print(CarsTE3)
}
Run the code above in your browser using DataLab