Learn R Programming

MAMA (version 2.2.1)

computeOrdering: Function to compute ordered gene lists

Description

Function computes test statistic for each gene in each dataset of MetaArray object and orders them form the most up-regulated (possitive statisics) to the most down-regulated (negative statistics).

Usage

computeOrdering(data, varname, test)

Arguments

data
MetaArray object
varname
A string indicating which column of clinical data matrices should be used to compute test statistic. Same column is used in all datasets.
test
"FCH" for fold change (function fold.change) or "T" for T-test (function meta.test)

Value

See Also

fold.change, meta.test

Examples

Run this code

data(Singhdata)

cl1<-as.data.frame(Singhdata$classes[[1]])
names(cl1)<-"classlab"
cl2<-as.data.frame(Singhdata$classes[[2]])
names(cl2)<-"classlab"
cl3<-as.data.frame(Singhdata$classes[[3]])
names(cl3)<-"classlab"
rownames(Singhdata$esets[[1]])<-Singhdata$geneNames
rownames(Singhdata$esets[[2]])<-Singhdata$geneNames
rownames(Singhdata$esets[[3]])<-Singhdata$geneNames

data<-new("MetaArray", GEDM=list(Singhdata$esets[[1]], Singhdata$esets[[2]], Singhdata$esets[[3]]),
clinical=list(cl1, cl2, cl3), datanames=c("dataset1", "dataset2", "dataset3"))

ord<-computeOrdering(data, "classlab", "FCH")

Run the code above in your browser using DataLab