Learn R Programming

MAMS (version 3.0.0)

plot.MAMS: Plot method for MAMS objects

Description

produces as plot of the boundaries.

Usage

# S3 method for MAMS
plot(
  x,
  ask = TRUE,
  which = 1:2,
  new = TRUE,
  col = NULL,
  pch = NULL,
  lty = NULL,
  main = NULL,
  xlab = "Analysis",
  ylab = "Test statistic",
  ylim = NULL,
  type = NULL,
  las = 1,
  ...
)

Value

Graphic output.

Arguments

x

An output object of class MAMS

ask

A logical indicating if R should wait for the next plot to be displayed.

which

A vector indicating which plot(s) to define. 1 displays the efficacy and futility limits per stage, 2 displays the efficacy nd futility probabilities per stage, 1:2 (default) displays both.

new

A logical indicating if the new plot of the futility and efficacy limits should be displayed (default=`TRUE``).

col

A specification for the default plotting color (default=NULL). See par for more details.

pch

Either an integer specifying a symbol or a single character to be used as the default in plotting points (default=NULL). See par for more details.

lty

A specification for the default line type to be used between analyses (default=NULL). Setting to zero suppresses plotting of the lines. See par for more details.

main

An overall title for the plot (default=NULL).

xlab

A title for the x axis (default="Analysis").

ylab

A title for the y axis (default=`"Test statistic"``).

ylim

A title for the y axis (default="Test statistic").

type

Type of plot to be used (default=NULL). See plot for more details.

las

A specification of the axis labeling style. The default 1 ensures the labels are always horizontal. See ?par for details.

...

Further arguments passed to or from other methods.

Author

Thomas Jaki, Dominique-Laurent Couturier

Examples

Run this code
# \donttest{
# 2-stage design with triangular boundaries
res <- mams(K=4, J=2, alpha=0.05, power=0.9, r=1:2, r0=1:2,
 p=0.65, p0=0.55, ushape="triangular", lshape="triangular", nstart=30)

plot(res)
# }

Run the code above in your browser using DataLab