# Fit logistic curve from p = 0.5 to p = 1.0
fp1 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/scal)),
c("L75", "scal"),
function(x,L75,scal)NULL)
nls(Correct/Trials ~ fp1(Loud, L75, scal), data = OME,
start = c(L75=45, scal=3))
nls(Correct/Trials ~ fp1(Loud, L75, scal),
data = OME[OME$Noise == "coherent",],
start=c(L75=45, scal=3))
nls(Correct/Trials ~ fp1(Loud, L75, scal),
data = OME[OME$Noise == "incoherent",],
start = c(L75=45, scal=3))
# individual fits for each experiment
aa <- factor(OME$Age)
ab <- 10*OME$ID + unclass(aa)
ac <- unclass(factor(ab))
OME$UID <- as.vector(ac)
OME$UIDn <- OME$UID + 0.1*(OME$Noise == "incoherent")
rm(aa, ab, ac)
OMEi <- OME
library(nlme)
fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/2)),
"L75", function(x,L75) NULL)
dec <- getOption("OutDec")
options(show.error.messages = FALSE, OutDec=".")
OMEi.nls <- nlsList(Correct/Trials ~ fp2(Loud, L75) | UIDn,
data = OMEi, start = list(L75=45), control = list(maxiter=100))
options(show.error.messages = TRUE, OutDec=dec)
tmp <- sapply(OMEi.nls, function(X)
{if(is.null(X)) NA else as.vector(coef(X))})
OMEif <- data.frame(UID = round(as.numeric((names(tmp)))),
Noise = rep(c("coherent", "incoherent"), 110),
L75 = as.vector(tmp), stringsAsFactors = TRUE)
OMEif$Age <- OME$Age[match(OMEif$UID, OME$UID)]
OMEif$OME <- OME$OME[match(OMEif$UID, OME$UID)]
OMEif <- OMEif[OMEif$L75 > 30,]
summary(lm(L75 ~ Noise/Age, data = OMEif, na.action = na.omit))
summary(lm(L75 ~ Noise/(Age + OME), data = OMEif,
subset = (Age >= 30 & Age <= 60),
na.action = na.omit), cor = FALSE)
# Or fit by weighted least squares
fpl75 <- deriv(~ sqrt(n)*(r/n - 0.5 - 0.5/(1 + exp(-(x-L75)/scal))),
c("L75", "scal"),
function(r,n,x,L75,scal) NULL)
nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),
data = OME[OME$Noise == "coherent",],
start = c(L75=45, scal=3))
nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),
data = OME[OME$Noise == "incoherent",],
start = c(L75=45, scal=3))
# Test to see if the curves shift with age
fpl75age <- deriv(~sqrt(n)*(r/n - 0.5 - 0.5/(1 +
exp(-(x-L75-slope*age)/scal))),
c("L75", "slope", "scal"),
function(r,n,x,age,L75,slope,scal) NULL)
OME.nls1 <-
nls(0 ~ fpl75age(Correct, Trials, Loud, Age, L75, slope, scal),
data = OME[OME$Noise == "coherent",],
start = c(L75=45, slope=0, scal=2))
sqrt(diag(vcov(OME.nls1)))
OME.nls2 <-
nls(0 ~ fpl75age(Correct, Trials, Loud, Age, L75, slope, scal),
data = OME[OME$Noise == "incoherent",],
start = c(L75=45, slope=0, scal=2))
sqrt(diag(vcov(OME.nls2)))
# Now allow random effects by using NLME
OMEf <- OME[rep(1:nrow(OME), OME$Trials),]
OMEf$Resp <- with(OME, rep(rep(c(1,0), length(Trials)),
t(cbind(Correct, Trials-Correct))))
OMEf <- OMEf[, -match(c("Correct", "Trials"), names(OMEf))]
## these fail in R on most platforms
fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/exp(lsc))),
c("L75", "lsc"),
function(x, L75, lsc) NULL)
try(summary(nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, lsc ~ 1),
random = L75 + lsc ~ 1 | UID,
data = OMEf[OMEf$Noise == "coherent",], method = "ML",
start = list(fixed=c(L75=c(48.7, -0.03), lsc=0.24)), verbose = TRUE)))
try(summary(nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, lsc ~ 1),
random = L75 + lsc ~ 1 | UID,
data = OMEf[OMEf$Noise == "incoherent",], method = "ML",
start = list(fixed=c(L75=c(41.5, -0.1), lsc=0)), verbose = TRUE)))
Run the code above in your browser using DataLab