Learn R Programming

MASS (version 7.3-36)

dose.p: Predict Doses for Binomial Assay model

Description

Calibrate binomial assays, generalizing the calculation of LD50.

Usage

dose.p(obj, cf = 1:2, p = 0.5)

Arguments

obj
A fitted model object of class inheriting from "glm".
cf
The terms in the coefficient vector giving the intercept and coefficient of (log-)dose
p
Probabilities at which to predict the dose needed.

Value

  • An object of class "glm.dose" giving the prediction (attribute "p" and standard error (attribute "SE") at each response probability.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

Examples

Run this code
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
budworm.lg0 <- glm(SF ~ sex + ldose - 1, family = binomial)

dose.p(budworm.lg0, cf = c(1,3), p = 1:3/4)
dose.p(update(budworm.lg0, family = binomial(link=probit)),
       cf = c(1,3), p = 1:3/4)

Run the code above in your browser using DataLab