good
part of the data. cov.mve
and
cov.mcd
are compatibility wrappers.cov.rob(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
method = c("mve", "mcd", "classical"),
nsamp = "best", seed)cov.mve(…)
cov.mcd(…)
good
points.
cov.mve
or cov.mcd
forces mve
or mcd
respectively.
"best"
or "exact"
or
"sample"
.
If "sample"
the number chosen is min(5*p, 3000)
, taken
from Rousseeuw and Hubert (1997). If "best"
exhaustive
enumeration is done up to 5000 samples: if "exact"
exhaustive enumeration will be attempted however many samples are needed.
RNGkind
. The
current value of .Random.seed
will be preserved if it is set.
cov.rob
other than method
.cor = TRUE
) the estimate of the correlation
matrix.
quantile.used
.
"mve"
, an approximate search is made of a subset of
size quantile.used
with an enclosing ellipsoid of smallest volume; in
method "mcd"
it is the volume of the Gaussian confidence
ellipsoid, equivalently the determinant of the classical covariance
matrix, that is minimized. The mean of the subset provides a first
estimate of the location, and the rescaled covariance matrix a first
estimate of scatter. The Mahalanobis distances of all the points from
the location estimate for this covariance matrix are calculated, and
those points within the 97.5% point under Gaussian assumptions are
declared to be good
. The final estimates are the mean and rescaled
covariance of the good
points. The rescaling is by the appropriate percentile under Gaussian data; in
addition the first covariance matrix has an ad hoc finite-sample
correction given by Marazzi. For method "mve"
the search is made over ellipsoids determined
by the covariance matrix of p
of the data points. For method
"mcd"
an additional improvement step suggested by Rousseeuw and
van Driessen (1999) is used, in which once a subset of size
quantile.used
is selected, an ellipsoid based on its covariance
is tested (as this will have no larger a determinant, and may be smaller).lqs
set.seed(123)
cov.rob(stackloss)
cov.rob(stack.x, method = "mcd", nsamp = "exact")
Run the code above in your browser using DataLab