# The data frames Cars93, minn38 and quine are available
# in the MASS package.
# Case 1: frequencies specified as an array.
sapply(minn38, function(x) length(levels(x)))
## hs phs fol sex f
## 3 4 7 2 0
##minn38a <- array(0, c(3,4,7,2), lapply(minn38[, -5], levels))
##minn38a[data.matrix(minn38[,-5])] <- minn38$f
## or more simply
minn38a <- xtabs(f ~ ., minn38)
fm <- loglm(~ 1 + 2 + 3 + 4, minn38a) # numerals as names.
deviance(fm)
## [1] 3711.9
fm1 <- update(fm, .~.^2)
fm2 <- update(fm, .~.^3, print = TRUE)
## 5 iterations: deviation 0.075
anova(fm, fm1, fm2)
# Case 1. An array generated with xtabs.
loglm(~ Type + Origin, xtabs(~ Type + Origin, Cars93))
# Case 2. Frequencies given as a vector in a data frame
names(quine)
## [1] "Eth" "Sex" "Age" "Lrn" "Days"
fm <- loglm(Days ~ .^2, quine)
gm <- glm(Days ~ .^2, poisson, quine) # check glm.
c(deviance(fm), deviance(gm)) # deviances agree
## [1] 1368.7 1368.7
c(fm$df, gm$df) # resid df do not!
c(fm$df, gm$df.residual) # resid df do not!
## [1] 127 128
# The loglm residual degrees of freedom is wrong because of
# a non-detectable redundancy in the model matrix.
Run the code above in your browser using DataLab