quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)
quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
quine.stp <- stepAIC(quine.nxt,
scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),
trace = FALSE)
quine.stp$anova
cpus1 <- cpus
for(v in names(cpus)[2:7])
cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = TRUE)
cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.lm <- lm(log10(perf) ~ ., data = cpus1[cpus.samp,2:8])
cpus.lm2 <- stepAIC(cpus.lm, trace = FALSE)
cpus.lm2$anova
example(birthwt)
birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
birthwt.step <- stepAIC(birthwt.glm, trace = FALSE)
birthwt.step$anova
birthwt.step2 <- stepAIC(birthwt.glm, ~ .^2 + I(scale(age)^2)
+ I(scale(lwt)^2), trace = FALSE)
birthwt.step2$anova
quine.nb <- glm.nb(Days ~ .^4, data = quine)
quine.nb2 <- stepAIC(quine.nb)
quine.nb2$anova
Run the code above in your browser using DataLab