Learn R Programming

MASS (version 7.3-64)

dose.p: Predict Doses for Binomial Assay model

Description

Calibrate binomial assays, generalizing the calculation of LD50.

Usage

dose.p(obj, cf = 1:2, p = 0.5)

Value

An object of class "glm.dose" giving the prediction (attribute

"p" and standard error (attribute "SE") at each response probability.

Arguments

obj

A fitted model object of class inheriting from "glm".

cf

The terms in the coefficient vector giving the intercept and coefficient of (log-)dose

p

Probabilities at which to predict the dose needed.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

Examples

Run this code
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
budworm.lg0 <- glm(SF ~ sex + ldose - 1, family = binomial)

dose.p(budworm.lg0, cf = c(1,3), p = 1:3/4)
dose.p(update(budworm.lg0, family = binomial(link=probit)),
       cf = c(1,3), p = 1:3/4)

Run the code above in your browser using DataLab