if (FALSE) {
ss.aipe.reliability (model='Parallel', type='Normal Theory', width=.1, i=6,
cor.est=.3, psi.square=.2, conf.level=.95, assurance=NULL, initial.iter=500,
final.iter=5000)
# Same as above but now 'assurance' is used.
ss.aipe.reliability (model='Parallel', type='Normal Theory', width=.1, i=6,
cor.est=.3, psi.square=.2, conf.level=.95, assurance=.85, initial.iter=500,
final.iter=5000)
# Similar to the above but now the "True Score" model is used. Note how the psi.square changes
# from a scalar to a vector of length i (number of items).
# Also note, however, that cor.est is a single value (due to the true-score model specified)
ss.aipe.reliability (model='True Score', type='Normal Theory', width=.1, i=5,
cor.est=.3, psi.square=c(.2, .3, .3, .2, .3), conf.level=.95,
assurance=.85, initial.iter=500, final.iter=5000)
ss.aipe.reliability (model='True Score', type='Normal Theory', width=.1, i=5,
cor.est=.3, psi.square=c(.2, .3, .3, .2, .3), conf.level=.95,
assurance=.85, initial.iter=500, final.iter=5000)
# Now, a congeneric model is used with the factor analytic appraoch. This is likely the
# most realistic scenario (and maps onto the ideas of Coefficient Omega).
ss.aipe.reliability (model='Congeneric', type='Factor Analytic', width=.1, i=5,
lambda=c(.4, .4, .3, .3, .5), psi.square=c(.2, .4, .3, .3, .2), conf.level=.95,
assurance=.85, initial.iter=1000, final.iter=5000)
# Now, the presumed population matrix among the items is used.
Pop.Mat<-rbind(c(1.0000000, 0.3813850, 0.4216370, 0.3651484, 0.4472136),
c(0.3813850, 1.0000000, 0.4020151, 0.3481553, 0.4264014), c(0.4216370,
0.4020151, 1.0000000, 0.3849002, 0.4714045), c(0.3651484, 0.3481553,
0.3849002, 1.0000000, 0.4082483), c(0.4472136, 0.4264014, 0.4714045,
0.4082483, 1.0000000))
ss.aipe.reliability (model='True Score', type='Normal Theory', width=.15,
S=Pop.Mat, conf.level=.95, assurance=.85, initial.iter=1000, final.iter=5000)
}
Run the code above in your browser using DataLab