# Since 'true.sm' equals 'estimated.sm', this usage
# returns the results of a correctly specified situation.
# Note that 'G' should be large (10 is used to make the
# example run easily)
# Res.1 <- ss.aipe.sm.sensitivity(true.sm=10, estimated.sm=10,
# desired.width=.5, assurance=.95, conf.level=.95, G=10,
# print.iter=FALSE)
# Lists contained in Res.1.
# names(Res.1)
#Objects contained in the 'Results' lists.
# names(Res.1$Results)
#How many obtained full widths are narrower than the desired one?
# Res.1$Summary$Pct.Width.obs.NARROWER.than.desired
# True standardized mean difference is 10, but specified at 12.
# Change 'G' to some large number (e.g., G=20)
# Res.2 <- ss.aipe.sm.sensitivity(true.sm=10, estimated.sm=12,
# desired.width=.5, assurance=NULL, conf.level=.95, G=20)
# The effect of the misspecification on mean confidence intervals is:
# Res.2$Summary$mean.full.width
Run the code above in your browser using DataLab