# Since 'true.delta' equals 'estimated.delta', this usage
# returns the results of a correctly specified situation.
# Note that 'G' should be large (50 is used to make the example run easily)
# Res.1 <- ss.aipe.smd.sensitivity(true.delta=.5, estimated.delta=.5,
# desired.width=.30, certainty=NULL, conf.level=.95, G=50,
# print.iter=FALSE)
# Lists contained in Res.1.
# names(Res.1)
#Objects contained in the 'Results' lists.
# names(Res.1$Results)
#Extract d from the Results list of Res.1.
# d <- Res.1$Results$d
# hist(d)
# Pull out summary measures
# Res.1$Summary
# True standardized mean difference is .4, but specified at .5.
# Change 'G' to some large number (e.g., G=5,000)
# Res.2 <- ss.aipe.smd.sensitivity(true.delta=.4, estimated.delta=.5,
# desired.width=.30, certainty=NULL, conf.level=.95, G=50,
# print.iter=FALSE)
# The effect of the misspecification on mean confidence intervals is:
# Res.2$Summary$mean.full.width
# True standardized mean difference is .5, but specified at .4.
# Res.3 <- ss.aipe.smd.sensitivity(true.delta=.5, estimated.delta=.4,
# desired.width=.30, certainty=NULL, conf.level=.95, G=50,
# print.iter=FALSE)
# The effect of the misspecification on mean confidence intervals is:
# Res.3$Summary$mean.full.width
Run the code above in your browser using DataLab