performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),
c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))
rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "a10", "a11",
"a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19", "a20",
"a21", "a22", "a23", "a24")
colnames(performanceTable) <- c("c1","c2","c3")
assignments <-c("P","P","P","F","F","F","F","F","F","P","P","P","P","P","P","P","P","P","F","F",
"F","F","F","F")
names(assignments) <- rownames(performanceTable)
categoriesRanks <- c(1,2)
names(categoriesRanks) <- c("P","F")
criteriaMinMax <- c("max","max","max")
names(criteriaMinMax) <- colnames(performanceTable)
set.seed(1)
x<-LPDMRSortInferenceApprox(performanceTable, criteriaMinMax, categoriesRanks, assignments,
majorityRules = c("dV","Dv","dv"),
timeLimit = 180, populationSize = 30,
alternativesIDs = c("a1","a2","a3","a4","a5","a6","a7"))
Run the code above in your browser using DataLab