performanceTable <- rbind(c(10,10,9), c(10,9,10), c(9,10,10), c(9,9,10),
c(9,10,9), c(10,9,9), c(10,10,7), c(10,7,10),
c(7,10,10), c(9,9,17), c(9,17,9), c(17,9,9),
c(7,10,17), c(10,17,7), c(17,7,10), c(7,17,10),
c(17,10,7), c(10,7,17), c(7,9,17), c(9,17,7),
c(17,7,9), c(7,17,9), c(17,9,7), c(9,7,17))
rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7",
"a8", "a9", "a10", "a11", "a12", "a13",
"a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24")
colnames(performanceTable) <- c("c1","c2","c3")
assignments <-c("P", "P", "P", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F")
names(assignments) <- rownames(performanceTable)
categoriesRanks <-c(1,2)
names(categoriesRanks) <- c("P","F")
criteriaMinMax <- c("max","max","max")
names(criteriaMinMax) <- colnames(performanceTable)
x<-MRSortInferenceExact(performanceTable, assignments, categoriesRanks,
criteriaMinMax, veto = TRUE, readableWeights = TRUE,
readableProfiles = TRUE,
alternativesIDs = c("a1","a2","a3","a4","a5","a6","a7"))
ElectreAssignments<-MRSort(performanceTable, x$profilesPerformances,
categoriesRanks,
x$weights, criteriaMinMax, x$lambda,
criteriaVetos=x$vetoPerformances,
alternativesIDs = c("a1","a2","a3","a4","a5","a6","a7"))
Run the code above in your browser using DataLab