performanceTableMin <- t(matrix(c(78,87,79,19,8,68,74,8,90,89,74.5,9,20,81,30),
nrow=3,ncol=5, byrow=TRUE))
performanceTable <- t(matrix(c(80,87,86,19,8,70,74,10,90,89,75,9,33,82,30),
nrow=3,ncol=5, byrow=TRUE))
performanceTableMax <- t(matrix(c(81,87,95,19,8,72,74,15,90,89,75.5,9,36,84,30),
nrow=3,ncol=5, byrow=TRUE))
row.names(performanceTable) <- c("Yield","Toxicity","Cost","Separation","Odour")
colnames(performanceTable) <- c("Route One","Route Two","Route Three")
row.names(performanceTableMin) <- row.names(performanceTable)
colnames(performanceTableMin) <- colnames(performanceTable)
row.names(performanceTableMax) <- row.names(performanceTable)
colnames(performanceTableMax) <- colnames(performanceTable)
criteriaWeights <- c(0.339,0.077,0.434,0.127,0.023)
names(criteriaWeights) <- row.names(performanceTable)
criteriaMinMax <- c("max", "max", "max", "max", "max")
names(criteriaMinMax) <- row.names(performanceTable)
test1 <- SURE(performanceTableMin,
performanceTable,
performanceTableMax,
criteriaWeights,
criteriaMinMax, NoOfSimulations = 101)
summary(test1)
plotSURE(test1)
plotSURE(test1, greyScale = TRUE, separate = TRUE)
test2 <- SURE(performanceTableMin,
performanceTable,
performanceTableMax,
criteriaWeights,
criteriaMinMax,
alternativesIDs = c("Route Two","Route Three"),
criteriaIDs = c("Yield","Toxicity","Separation"),
NoOfSimulations = 101)
summary(test2)
plotSURE(test2)
plotSURE(test2, greyScale = TRUE, separate = TRUE)
Run the code above in your browser using DataLab