# the separation threshold
epsilon <-0.05
# the performance table
performanceTable <- rbind(
c(3,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))
rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")
colnames(performanceTable) <- c("Price","Time","Comfort")
# ranks of the alternatives
alternativesAssignments <- c("good","medium","medium","bad","bad")
names(alternativesAssignments) <- row.names(performanceTable)
# criteria to minimize or maximize
criteriaMinMax <- c("min","min","max")
names(criteriaMinMax) <- colnames(performanceTable)
# number of break points for each criterion
criteriaNumberOfBreakPoints <- c(3,4,4)
names(criteriaNumberOfBreakPoints) <- colnames(performanceTable)
# ranks of the categories
categoriesRanks <- c(1,2,3)
names(categoriesRanks) <- c("good","medium","bad")
x<-UTADIS(performanceTable, criteriaMinMax, criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks,0.1)
# filtering out category "good" and assigment examples "RER" and "TAXI"
y<-UTADIS(performanceTable, criteriaMinMax, criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks,0.1,
categoriesIDs=c("medium","bad"),
alternativesIDs=c("METRO1","METRO2","BUS"))
# working furthermore on only 2 criteria : "Comfort" and "Time"
z<-UTADIS(performanceTable, criteriaMinMax, criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks,0.1,
criteriaIDs=c("Comfort","Time"))
Run the code above in your browser using DataLab