# ----------------------------------------
# ranking some cars (from original article on UTA by Siskos and Lagreze, 1982)
# the separation threshold
epsilon <-0.01
# the performance table
performanceTable <- rbind(
c(173, 11.4, 10.01, 10, 7.88, 49500),
c(176, 12.3, 10.48, 11, 7.96, 46700),
c(142, 8.2, 7.30, 5, 5.65, 32100),
c(148, 10.5, 9.61, 7, 6.15, 39150),
c(178, 14.5, 11.05, 13, 8.06, 64700),
c(180, 13.6, 10.40, 13, 8.47, 75700),
c(182, 12.7, 12.26, 11, 7.81, 68593),
c(145, 14.3, 12.95, 11, 8.38, 55000),
c(161, 8.6, 8.42, 7, 5.11, 35200),
c(117, 7.2, 6.75, 3, 5.81, 24800)
)
rownames(performanceTable) <- c(
"Peugeot 505 GR",
"Opel Record 2000 LS",
"Citroen Visa Super E",
"VW Golf 1300 GLS",
"Citroen CX 2400 Pallas",
"Mercedes 230",
"BMW 520",
"Volvo 244 DL",
"Peugeot 104 ZS",
"Citroen Dyane")
colnames(performanceTable) <- c(
"MaximalSpeed",
"ConsumptionTown",
"Consumption120kmh",
"HP",
"Space",
"Price")
# ranks of the alternatives
alternativesRanks <- c(1,2,3,4,5,6,7,8,9,10)
names(alternativesRanks) <- row.names(performanceTable)
# criteria to minimize or maximize
criteriaMinMax <- c("max","min","min","max","max","min")
names(criteriaMinMax) <- colnames(performanceTable)
x<-additiveValueFunctionElicitation(performanceTable,
criteriaMinMax, epsilon,
alternativesRanks = alternativesRanks)
Run the code above in your browser using DataLab