# NOT RUN {
data(beckham.data)
data(beckham.eff)
# analysing the first 5 genes
# (to try it with all 10 genes, change the line below to gcol=4:13)
gcol=4:8
ccol=1:3 # columns containing experimental conditions
# recalculating into molecule counts, reformatting
qs=cq2counts(data=beckham.data,genecols=gcol,
condcols=ccol,effic=beckham.eff,Cq1=37)
# creating a single factor, 'treatment.time', out of 'tr' and 'time'
qs$treatment.time=as.factor(paste(qs$tr,qs$time,sep="."))
# fitting a naive model
naive=mcmc.qpcr(
fixed="treatment.time",
data=qs,
nitt=3000,burnin=2000 # remove this line in actual analysis!
)
#summary plot of inferred abundances
#s1=HPDsummary(model=naive,data=qs)
#summary plot of fold-changes relative to the global control
s0=HPDsummary(model=naive,data=qs,relative=TRUE)
# pairwise differences and their significances for each gene:
s0$geneWise
# }
Run the code above in your browser using DataLab