Learn R Programming

MCMCglmm (version 2.36)

summary.MCMCglmm: Summarising GLMM Fits from MCMCglmm

Description

summary method for class "MCMCglmm". The returned object is suitable for printing with the print.summary.MCMCglmm method.

Usage

# S3 method for MCMCglmm
summary(object, random=FALSE, ...)

Value

DIC

Deviance Information Criterion

fixed.formula

model formula for the fixed terms

random.formula

model formula for the random terms

residual.formula

model formula for the residual terms

solutions

posterior mean, 95% HPD interval, MCMC p-values and effective sample size of fixed (and random) effects

Gcovariances

posterior mean, 95% HPD interval and effective sample size of random effect (co)variance components

Gterms

indexes random effect (co)variances by the component terms defined in the random formula

Rcovariances

posterior mean, 95% HPD interval and effective sample size of residual (co)variance components

Rterms

indexes residuals (co)variances by the component terms defined in the rcov formula

csats

chain length, burn-in and thinning interval

cutpoints

posterior mean, 95% HPD interval and effective sample size of cut-points from an ordinal model

theta_scale

posterior mean, 95% HPD interval, MCMC p-values and effective sample size of scaling parameter in theta_scale models.

Arguments

object

an object of class "MCMCglmm"

random

logical: should the random effects be summarised

...

Further arguments to be passed

Author

Jarrod Hadfield j.hadfield@ed.ac.uk

See Also

MCMCglmm