# NOT RUN {
# detailed information regarding MCP-Mod methodology
# and R-package available via vignette("MCPMod")
# }
# NOT RUN {
# planning a trial for MCPMod
doses <- c(0,10,25,50,100,150)
models <- list(linear = NULL, emax = c(25),
logistic = c(50, 10.88111), exponential = c(85),
betaMod = matrix(c(0.33, 2.31, 1.39, 1.39), byrow=TRUE,nrow=2))
plotModels(models, doses, base = 0, maxEff = 0.4, scal = 200)
sSize <- sampSize(models, doses, base = 0, maxEff = 0.4, sigma = 1,
upperN = 80, scal = 200, alpha = 0.05)
sSize
plM <- planMM(models, doses, n = rep(sSize$samp.size,6), scal=200, alpha = 0.05)
plM
plot(plM)
# analysing a trial
data(biom)
models <- list(linear = NULL, linlog = NULL, emax = 0.2,
exponential = c(0.279,0.15), quadratic = c(-0.854,-1))
dfe <- MCPMod(biom, models, alpha = 0.05, dePar = 0.05, pVal = TRUE,
selModel = "maxT", doseEst = "MED2", clinRel = 0.4, off = 1)
# detailed information is available via summary
summary(dfe)
# plots data with selected model function
plot(dfe, complData = TRUE, cR = TRUE)
# }
Run the code above in your browser using DataLab