
Extract subnetworks for modules and plot.
plot_module(output.summary,PFN,subset.module = NULL,col.names,
gene.set = NULL,color.code = "logFC",show.legend = TRUE,
label.hubs.only = TRUE,hubLabel.col = "red",hubLabel.sizeProp = 0.5,show.topn.hubs = 10,
node.sizeProp = 13,label.sizeProp = 13,label.scaleFactor = 10,label.alpha = 0.5,
layout = "kamada.kawai",output.plot = TRUE,out.dir = "modulePlot")
output from summary function, "MEGENA.ModuleSummary".
igraph object retaining PFN topology.
A character vector for list of module names to plot. Default = NULL plots all modules in output.summary.
a character vector for list of colors to be used for coloring children modules.
A list object containing signatures for customized coloring of nodes in resulting network plot.
A character vector with matched length to "gene.set", to specify colors for each signature.
TRUE/FALSE to show labels for significant hub genes only, or all genes. Defauly is TRUE.
Label color for hubs. Default is "red"
TRUE/FALSE for showing node legend on the bottom of the figure.
A multiplicative factor to adjust hub label sizes with respect to node size values. Default is 0.5
Maximal number of hubs to label on module subnetwork. Default is 10.
A multiplicative factor to adjust node sizes with respect to 90th percentile degree node size. Default is 13
A multiplicative factor to adjust node label sizes with respect to 90th percentile degree node size. Default is 13
Overall scale factor to control the final size of node labels appearing in figure. Default is 10.
Transparency value ranging from 0 (transparent) to 1 (solid). Default is 0.5.
Network layout algorithm to apply. Options are: "kamada.kawai", "fruchterman.reingold".
logical value. output.plot = TRUE generates figure files under folder, "modulePlot".
if output.plot = TRUE, then out.dir is created and resulting figures are exported to .png files to the folder.
A list object holding ggplot objects for plotted modules.
Subnetwork plot functionality with application of "ggrepel" package for node labeling. The most effective way to control overall node label size is through label.scaleFactor.
# NOT RUN {
rm(list = ls())
library(MEGENA)
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output,
mod.pvalue = 0.05,hub.pvalue = 0.05,
min.size = 10,max.size = 5000,
annot.table = NULL,id.col = NULL,symbol.col = NULL,
output.sig = TRUE)
pnet.obj <- plot_module(output = output.summary,PFN = g,subset.module = "comp1_2",
layout = "kamada.kawai",label.hubs.only = FALSE,
gene.set = list("hub.set" = c("CD3E","CD2")),color.code = c("red"),
output.plot = FALSE,out.dir = "modulePlot",col.names = c("grey","grey","grey"),
hubLabel.col = "black",hubLabel.sizeProp = 1,show.topn.hubs = Inf,show.legend = TRUE)
pnet.obj
# }
Run the code above in your browser using DataLab